UNIVERSAL FLIGHT CONTROLLER TECHNICAL PRODUCT PASSPORT

Registration No.: <u>N/A</u>

Effective from «____» _____ 2025

Заводський №: <u>SFC-25F02B-CHN-00846</u>

Factory No.: **SFC-1**

When transferring the product to another owner, this passport must accompany the product.

TABLE OF CONTENTS

REVISION HISTORY	3
ΠΡURPOSE AND SCOPE OF APPLICATION	3
DELIVERY SET	3
TECHNICAL SPECIFICATIONS	4
DEVICE AND PRINCIPLE OF OPERATION	11
OPERATING INSTRUCTIONS	14
STORAGE AND TRANSPORTATION	14
CERTIFICATE OF ACCEPTANCE	15

REVISION HISTORY

Revision	Date	Description of Changes
rev. A	01.01.2024	Initial version
rev. B	01.01.2025	Typo corrections in Section X

PURPOSE AND SCOPE OF APPLICATION

The universal flight controller (hereinafter referred to as the "flight controller") is intended for controlling aerial, ground, and surface unmanned vehicles.

It provides reliable control and navigation of unmanned platforms under demanding operating conditions.

DELIVERY SET

The flight controller is delivered in the configuration specified in Table 1:

Table 1 – Delivery Set

Nº	Item	Qantity
1	Flight controller	1
2	Connectors with pre-attached wires	12
3	Packaging box	1
4	Aluminum enclosure	1*

* - The enclosure is included only in the extended configuration and is not supplied with the basic flight controller kit.

TECHNICAL SPECIFICATIONS

The main components of the flight controller are listed in Table

Table 2 – Core Components of the Flight Controller

2:

Nº	Туре	Model	Note
1	Processor	STM32H743	
2	IMU №1	ADIS16470	
3	IMU №2	ICM45686	
4	IMU №3	BMI088	
5	Magnetometer	MMC5983MA	
6	Static air pressure sensor	MS5611	
7	Differential air pressure sensor	5525DSO- B001DS	
8	Temperature sensor №1	TMP117	
9	Temperature sensor №2	TMP390	Autonomous
10	Memory (FRAM)	MB85RS256	
12	External watchdog timer / power voltage monitor	CAT823	Autonomous

The main interfaces of the flight controller are listed in Table 3:

Table 3 – Main Interfaces of the Flight Controller

N₂	Туре	Parameters	Note
1	1x Ethernet	10/100 Mbit/s	With Passive PoE support (8–50 V)
2	2x CAN FD	1 Mbit/s, 5 V	Galvanically isolated (5000 V)
3	2x RS-485	16 Mbit/s, 5	Galvanically isolated (3500 V)
4	1x SBUS/PPM/DSM	03.3V	ESD protection + buffer
5	1x RSSI	03.3V	ESD protection
6	14x PWM	03.3V	ESD protection + buffer
7	1x I2C	400kHz, 0 3.3V	ESD protection + re- driver
8	1x USB Type-C	USB FS 12 Mbit/s	For setup, firmware flashing, or debug power supply
9	1x ARM JTAG	_	Standard full-size ARM JTAG
10	1x Micro SD	_	ESD protection + power switch

Controller Interface Connections (Tables 4 - 13):

Table 4 – Ethernet/PoE interface Connection

	Ethertnet/PoE			
N₂	Name	Туре	Note	
1	RX+	Input		
2	RX-	Input		
3	TX+	Output		
4	TX-	Output		
5	VIN+	Power	8–50V	
6	VIN+	Power	8–50V	
7	GND	Power		
8	GND	Power		

Table 5 – SBUS/PPM/DSM/RSSI Interfaces Connection

	SBUS/PPM/DSM (RC IN/ RSSI PWM)			
N₂	Name	Туре	Note	
1	+5V OUT	Power		
2	RSSI IN	Input		
3	SBUS/DSMX	Input		
4	PPM IN	Input		
5	GND	Power		

Table 6 – I2C Interface Connection

	I2C			
N⁰	Name	Туре	Note	
1	+5V OUT	Power		
2	I2C1 SCL	In/Out		
3	I2C1 SDA	In/Out		
4	GND	Ground (Input)		

Table 7 – CAN Interface (№1 and №2)

	CAN №1, CAN №2				
No	Name	Туре	Note		
1	X/INT	Dozway	Optional external power		
1	VIIN	1 VIN Power	Power	Power	(8–50 V)
2	CAN1 H	In/Out			
3	CAN1 L	In/Out			
4	GND	Input			

Table 8 – RS-485 Interface (No1 and No2)

	RS-485 №1, RS-485 №2 (galvanically unleashed)			
N₂	Name	Туре	Note	
1	VIN	Power	Optional external power (8–50 V)	
2	RS-485 V	In/Out		
3	RS-485 A	In/Out		
4	GND	Input		

Table 9 – USART Interface (№1, №2, №3)

SBUS/PPM/DSM (RC IN/ RSSI PWM)			
N₂	Name	Type	Note
1	+5V OUT	Power	
2	USART TX	In/Out	
3	USART RX	In/Out	
4	USART CTS	In/Out	
5	USART RTS	In/Out	
6	GND	Power	

Table 10 – Main Power Input

	PWR IN			
N₂	Name	Туре	Note	
1	VIINI	Dozwan	External power input	
1	VIN	Power	(8–50 V)	
2	VINI	Dorver	External power input	
2	VIN	Power	(8–50 V)	
3	GND	Power		
4	GND	Power		

Table 11 – PWM/GPIO Interface

PWM/GPIO					
N₂	Name	Type	Note		
1	PWM1	In/Out			
2	PWM2	In/Out			
3	PWM3	In/Out			
4	PWM4	In/Out			
5	PWM5	In/Out			
6	PWM6	In/Out			
7	PWM7	In/Out			
8	PWM8	In/Out			
9	PWM9	In/Out			
10	PWM10	In/Out			
11	PWM11	In/Out			
12	PWM12	In/Out			
13	PWM13	In/Out			
14	PWM14	In/Out			
15	GND	Power			

Table 12 – ARM JTAG Interface (20 pin)

ARM JTAG (20 pin)					
Nº	Name	Туре	Note		
1	VTref	Power			
2	NC	_	Not used		
3	nTRST	In/Out			
4	GND	Power			
5	TDI	In/Out			
6	GND	Power			
7	TMS	In/Out			
8	GND	Power			
9	TCK	In/Out			
10	GND	Power			
11	RTCK	In/Out			
12	GND	Power			
13	TDO	In/Out			
14	GND	Power			
15	nRESET	In/Out			
16	GND	Power			
17	DBGRQ	In/Out			
18	GND	Power			
19	+5V IN	Power			
20	GND	Power			

Main technical specification of Flight controller is displayed in Table 13:

Table 13 – Technical Specifications

Nº	Characteristic	Unit	Measurement Conditions	Value
1	Supply voltage (including PoE input)	V		8–50
2	Current consumption	A	V = 12 M	0.1±0.05
3	Power consumption	W		1.5
4	Gyroscope zero bias drift	°/год		8.0
5	Gyroscope angle random walk	°/√h		0.3
6	Gyroscope bandwidth	Hz		550.0
7	Accelerometer offset instability	μg		13.0
8	Accelerometer measurement range	g		±40
9	Relative error of differential airspeed sensor	%	T = 25 °C	±0.25
10	Absolute error of static air pressure sensor	mBar		±2.5
11	Absolute resolution of static air pressure sensor	mBar(m)		0.012 (~0.1)
12	Absolute temperature measurement error	°C		±0.1
13	Moisture protection	IP		IP64 or better
14	Operating temperature range	°C		-55 +85
15	Main board dimensions	mm		170*85
16	Main board weight	g		84
17	Mean total lifespan	h		TBD

DEVICE AND PRINCIPLE OF OPERATION

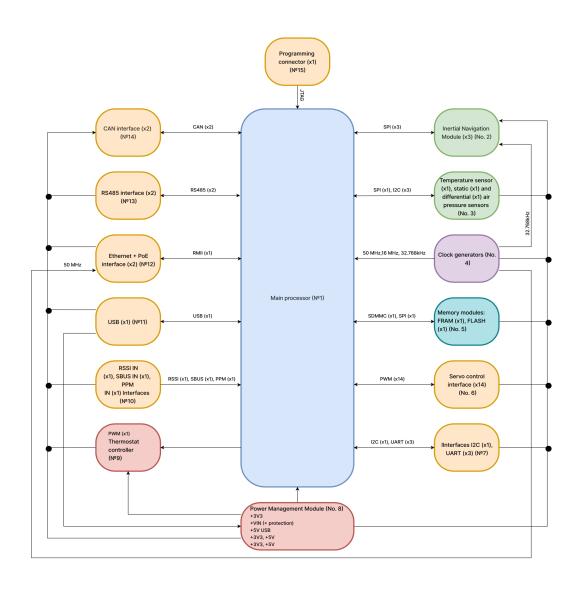


Figure 1. Block Diagram of the Flight Controller

The flight controller (see Fig. 1) consists of the following modules:

Main Processor

The central processing unit controlling all autopilot systems, including sensor data processing, mission execution, and coordination between modules.

Inertial Navigation Module

A highly reliable triple-triple redundant module ensuring precise angular orientation and acceleration, even in case of failure of one or more components.

Static and Dynamic Pressure Sensors, Thermometer: Sensors for measuring static and dynamic air pressure, used for airspeed calculation altitude, and ambient temperature — essential for accurate flight dynamics.

High-Precision Clock Generators: Internal highly stable clock sources (±2.5/5 ppm) ensuring synchronization of the processor, navigation module, and interface drivers.

FLASH and FRAM Memory Modules: Non-volatile memory devices for storing critical data like system parameters, configurations, tasks, and log files.

Servo Control Interface: Supports up to 14 external actuators with EMI and ESD protection, ensuring high-reliability control; also usable as general-purpose I/O (GPIO).

I2C and UART Interfaces: Universal protected interfaces with EMI/ESD shielding and re-drivers for signal integrity.

Power Management Module: Wide input voltage range (8–50 V) with EMI/ESD filtering, powering all internal subsystems and generating required voltage levels.

Thermostat Controller: Stabilizes inertial sensor temperatures, includes autonomous preheating for low-temp operation down to -55 °C.

RSSI IN, SBUS IN, PPM IN Inputs: Interfaces for connecting RC receivers and monitoring radio signal strength (RSSI).

USB Type-C Port: Universal port for debug powering, firmware flashing (DFU), and connection to onboard computer or configuration software.

Ethernet 10/100 Base Port: Network interface with Passive PoE support (up to 50 V) for integration with ground stations or networked devices.

RS485 Ports: Two isolated EMI/ESD-protected ports, future support for MODBUS-capable devices.

CAN Ports: Two isolated ports with EMI/ESD protection, supporting DroneCAN for integration with modern onboard and peripheral systems.

OPERATING INSTRUCTIONS

The flight controller must be operated according to the requirements and conditions specified in this technical passport. Exceeding operational limits is not permitted.

STORAGE AND TRANSPORTATION

The controller must be stored in an individual box and antistatic bag, in a dry, heated, and clean environment with a temperature from +5 to +40 °C and relative humidity not exceeding 80%.

CERTIFICATE OF ACCEPTANCE

The primary controlled parameters are listed in Table 14:

Table 14 – Controlled Parameters

N₂	Characteristic	Unit	Measurement Conditions	Acceptable Range	Inspection Result		
1	Supply voltage, V	V	8V, 12V, 50BV	850	+		
2	Standby current, I		V = 12 V	0.05-0.2	+		
3	Absolute heater current	A		TBD			
4	Relative data loss overUSART	%			-		
5	Relative data loss over RS-485		%	% t	Test packet	Not allowed	+
6	Relative data loss over CAN				size - 512 bits, transfer rate - 115200 baud, 3 retries		+
7	Relative data loss over PPM						+
8	Relative data loss over SBUS				-		

Table 14 – Continued

9	Relative value of data loss when receiving via I2C port	%	Test packet size - 512 bits, transfer rate - 115200 baud, 3 retries.	Not allowed	-
10	Permissible relative error of RSSI level measurement			< 3	-
11	Absolute latency (ping) over Ethernet	ms		< 50	+
12	Relative packet loss over Ethernet	%	100 packets of 64-bit length, sent over a local test network.	< 1	+
13	Permissible relative error in servo control signal frequency, f		V = 12 V, f = 50 HZ	< 10	+
14	Permissible relative error in servo signal duty cycle, T		V = 12 V, T = 12 ms.	< 1	+
15	Number of non- operational sensors	pcs	All permissible operating conditions	Not allowed	-

Based on quality control results, the flight controller is deemed fit for operation.